Anti Fuzzy Bi-Ideals in Boolean Like Semi-Rings

¹A.Sony, ²R.Rajeswari and ³N.Meenakumari

¹PG student, ¹A.P.C.Mahalaxmi College for women, Thoothukudi, Tamilnadu,India.

¹stalinlion@gmail.com

^{2,3}PG &Research Department of Mathematics, ^{2,3}A.P.C.Mahalaxmi college forwomen, Thoothukudi,

Tamilnadu,India.

²rajeswarir30@yahoo.com , ³meenakumari.n123@gmail.com

Abstract

Boolean like semi-rings were introduced by K.Venkatesawarlu, B.V.N.Murthy and N.Amarnath. A Boolean like semi-ring is a commutative ring with unity and is of characteristic 2. The concept of a fuzzy subset of a non-empty set was introduced by zadeh. In this paper, we introduce the notion of anti-fuzzy bi-ideals in Boolean like semi-ring R. Let R be a Boolean like semi-ring and μ be the fuzzy set of R. Then μ is said to be a anti fuzzy bi-ideal of R if

- 1) $\mu(x-y) \le \max\{ \mu(x), \mu(y) \}, x, y \in \mathbb{R}$
- 2) $\mu(xyz) \le \max\{ \mu(x), \mu(z) \}, x, y, z \in \mathbb{R} \text{ and also obtain some of their properties.}$

Keywords

Boolean like semi-ring, fuzzy set, fuzzy bi-ideal, Anti-fuzzy bi-ideal.

1.Introduction

Boolean like semi-rings were introduced in role by K.Venkatesawarlu, B.V.N.Murthy and N.Amarnath[7] during 2011. Boolean like rings of A.L.Foster arise naturally from general ring dulity considerations and preserve many of the formal properties of Boolean ring. A Boolean like ring is a commutative ring with unity & is of characteristic 2. The concept of a fuzzy subset of a non-empty set was introduced by zadeh[8]. Fuzzy ideals of rings were introduced by Ziu, and it has been studied by several authors.Fuzzy bi-ideals in Boolean like semi-rings was introduced by N.Meenakumari and R.Rajeswari[6]. In this paper, we introduce the concept of anti fuzzy bi-ideals in Boolean like semi-rings and study the some properties of anti fuzzy bi-ideals.

Definition 2.1

A non-empty set R with two binary operations '+' and '.' is called a **near-ring** if

- i) (R,+) is a group (not necessarily abelian)
- ii) (R, \cdot) is a semigroup

iii)
$$x.(y+z) = x.y+x.z$$
 for all $x,y,z \in \mathbb{R}$

Definition 2.2

A subgroup B of (N,+) is said to be a bi-ideal of N if BNB \cap (BN)* B \subseteq B.

Definition 2.3

A system $(R,+,\cdot)$ a **Boolean semi-ring** iff the following properties hold

- i) (R,+) is a additive (abelian) group(whose 'zero' will be denoted by '0')
- ii) (R, \cdot) is a semigroup of idempotent in the sense aa=a for all $a \in R$.
- iii) a(b+c)=ab+ac and

2.Preliminaries:

Example 2.4

Let (G,+) be any abelian group define ab=b for all $a,b\in G$. Then $(G,+,\cdot)$ is a Boolean semi-ring.

Definition 2.5

A nonempty set R together with two binary operations + and \cdot satisfying the following conditions is called a **Boolean like semi- ring.**

- i) (R,+) is an ableian group.
- ii) (R, \cdot) is a semi group.
- iii) a.(b+c) = a.b+a.c for all $a,b,c \in \mathbb{R}$
- iv) a+a = 0 for all a in R.
- v) ab(a+b+ab) = ab for all $a,b \in \mathbb{R}$

Definition 2.6

A nonempty I of R is said to be an ideal if

- i) (I,+) is a subgroup of (R,+), (ie)., for $a,b\in R \Rightarrow a+b\in R$.
- ii) $ra \in R$ for all $a \in I$, $r \in R$ (ie)., $RI \subseteq I$.
- iii) $(r+a)s+rs\in I \text{ for all } r,s\in R, a\in I.$

Definition 2.7

Let μ be a fuzzy set defined on R. Then μ is said to be **a fuzzy ideal** of R if

- i) $\mu(x-y) \ge \min\{\ \mu(x),\ \mu(y)\},\ x,y \in R.$
- ii) $\mu(ra) \ge \mu(a)$ for all $r, a \in \mathbb{R}$.
- iii) $\mu((r+a)s+rs) \ge \mu(a)$ for all $r,a,s \in \mathbb{R}$.

Definition2.8

A fuzzy set μ in a Boolean like semi-ring R is called an anti fuzzy left ideal of M, if

- i) $\mu(x-y) \leq \max\{ \mu(x), \mu(y)\}, x, y \in \mathbb{R}.$
- ii) $\mu(ra) \le \mu(a)$ for all $r, a \in \mathbb{R}$.
- iii) $\mu((r+a)s+rs) \le \mu(a)$, for all r,a,s $\in \mathbb{R}$.

Definition2.9

If ϑ is a fuzzy set in f(M), then the fuzzy set $\mu = \vartheta \circ f$ in M (ie)., the fuzzy set defined by $\mu(x) = \vartheta$ (f(x)) for all x in M is called the pre-image of ϑ under f.

Definition 2.10

Let μ be a fuzzy set defined on R. Then μ is said to be a fuzzy bi-ideal of R if

1) $\mu(x-y) \ge \min\{ \mu(x), \mu(y) \}, x, y \in R$ 2) $\mu(xyz) \ge \min\{ \mu(x), \mu(z) \}, x, y, z \in R$

3. Anti Fuzzy Bi-ideals in Boolean like semi-rings:

In this section we define an anti fuzzy bi-ideal in Boolean like semi-rings and some theorems are proved.

Definition 3.1

Let μ be a fuzzy set defined on R. Then μ said to be **anti fuzzy bi-idea**l of R, if

- 1) $\mu(x-y) \le \max\{ \mu(x), \mu(y) \}, x, y \in R$
- 2) $\mu(xyz) \le \max\{ \mu(x), \mu(z) \}, x, y, z \in \mathbb{R}$

© 2019 JETIR February 2019, Volume 6, Issue 2 Example :3.2

Consider a Boolean like semi – ring R, Let μ be an Anti-fuzzy bi-ideal defined on R by $\mu(0) = 0.4$ $\mu(a) = 0.5 \ \mu(b) = 0.6 \ \mu(c) = 0.7$ for every x ϵ M.

+	0	a	b	с
0	0	a	b	с
a	a	0	С	b
b	b	с	0	a
с	a	b	a	0

•	0	a	b	c	
0	0	0	0	0	
a	0	0	a	a	
b	0	0	b	b	
с	0	а	b	c	

Then μ is an anti-fuzzy bi-ideal of M.

Theorem 3.3

Let R be a Boolean like semi-ring and μ be an anti-fuzzy bi-ideal of R. Then the set R_{μ} = { x ϵ R / $\mu(x) = \mu(0)$ } is a bi-ideal of R.

Proof :

Let μ be an anti-fuzzy bi-ideal.

i)Let x,y $\in R_{\mu}$ implies $\mu(x) = \mu(0)$ and $\mu(y) = \mu(0)$.

Then $\mu(x-y) \leq \max \{ \mu(x), \mu(y) \}$

$$\mu(x-y) \le \max \{ \mu(0), \mu(0) \}$$

 $= \max \{ 0, 0 \} = 0$

 $\mu(x-y) = \mu(0).$

Hence, $x-y \in R_{\mu}$.

ii)Now,Let x,y,z $\in R_{\mu}$ implies $\mu(x) = \mu(y) = \mu(z) =$

Then, $\mu(xyz) \leq \max \{ \mu(x), \mu(z) \}$

 $\mu(xyz) \le \max \{ \mu(0), \mu(0) \}$ $\mu(xyz) = \mu(0).$ Hence, $xyz \in R_{\mu}$.

Therefore, R_{μ} is a bi-ideal of R.

Theorem 3.4

If { $\mu_i / i \in \Lambda$ } is a family of anti fuzzy bi-ideals of Boolean like semi-ring R then so is $\cup_{i \in \Lambda} \mu_i$

Proof

Let { $\mu_i / i \in \Lambda$ } be a family of anti fuzzy bi-ideals of R and let x, y \in R.

Then,

$$(\cup_{i \in \Lambda} \mu_i)(x - y) = \sup \{ \mu_i(x - y) / i \in \Lambda \}$$

$$\leq \sup \{ \max \{ \mu_i(x), \mu_i(y) / i \in \Lambda \} \}$$

$$= \max \{ \sup \{ \mu_i(x) / i \in \Lambda \}, \sup \{ \mu_i(y) / i \in \Lambda \} \}$$

$$= \max \{ (\cup_{i \in \Lambda} \mu_i) (x), (\cup_{i \in \Lambda} \mu_i) (y) \}$$
And let x,y,z \in R. Then,

$$(\cup_{i \in \Lambda} \mu_i) (xyz) = \sup \{ \mu_i(xyz) / i \in \Lambda \}$$

$$\leq \sup \{ \max \{ \mu_i(x), \mu_i(z) / i \in \Lambda \} \}$$

$$= max \{ sup \{ \mu_i(x) / i \in \Lambda \}, sup \{ \mu_i(z) \}$$

/i€Λ}}

 $= \max \left\{ \left(\bigcup_{i \in \Lambda} \mu_i \right) (x) , \left(\bigcup_{i \in \Lambda} \mu_i \right) (z) \right\}$

Theorem 3.5

Intersection of a non-empty collection of anti fuzzy bi-ideals of a Boolean like semi-ring R is an anti fuzzy bi-ideal of R.

Proof

Let R be a Boolean like semi-ring. Let { $\mu_i / i \in I$ } be the family of anti fuzzy bi-ideal of R and let x,y

```
∈ R.
```

Then, we have

 $\mathbf{i})(\bigcap_{i\in I}\mu_i)(\mathbf{x}\cdot\mathbf{y}) = \inf_{\mathbf{i}\in\mathbf{I}}\{\mu_i(\mathbf{x}\cdot\mathbf{y})\}$

 $\leq \inf_{i \in I} \left\{ \max \left\{ \mu_i(x) , \mu_i(y) \right\} \right\}$

© 2019 JETIR February 2019, Volume 6, Issue 2

www.jetir.org (ISSN-2349-5162)

 $= \max\{ \inf_{i \in I} \mu_i(x), \inf_{i \in I} \mu_i(y) \}$ $= \max \left[(\bigcap_{i \in I} \mu_i)(x), (\bigcap_{i \in I} \mu_i)(y) \right]$

Now let $x, y, z \in R$.

Then we have,

ii)($\bigcap_{i \in I} \mu_i$) (xyz) = inf_{i \in I}{ μ_i (xyz)} $\leq inf_{i \in I}$ { max{ $\mu_i(x), \mu_i(z)$ }} = max{ inf_{i \in I} $\mu_i(x), inf_{i \in I}\mu_i(z)$ } = max[($\bigcap_{i \in I} \mu_i$)(x),($\bigcap_{i \in I} \mu_i$)(z)]

Theorem 3.6

Let R be a Boolean like semi-ring. Then a fuzzy set μ is an anti fuzzy bi-ideal of R iff μ^c is a fuzzy bi-ideal of R.

Proof

Let $x,y \in R$ and μ be an anti fuzzy bi-ideal of R then we have,

i) $\mu^{c} (x - y) = 1 - \mu(x - y)$ $\geq 1 - \max \{ \mu(x), \mu(y) \}$ $= \max \{ 1 - \mu(x), 1 - \mu(y) \}$ $= \max \{ \mu^{c} (x), \mu^{c} (y) \}$ Now let x,y,z ϵ R. Then, ii) $\mu^{c} (xyz) = 1 - \mu(xyz)$ $\geq 1 - \max \{ \mu(x), \mu(z) \}$ $= \max \{ 1 - \mu(x), 1 - \mu(z) \}$ $= \max \{ \mu^{c} (x), \mu^{c} (z) \}$ Hence μ^{c} is a fuzzy bi-ideal of R. similarly the

converse follows.

Theorem 3.7 :

A Boolean like semi-ring homomorphic preimage of an anti fuzzy bi-ideal is an anti fuzzy biideal.

Proof

Let R & S be Boolean like semi-rings. Let f: $R \rightarrow S$ be a Boolean like semi-ring homomorphism ϑ be an anti fuzzy bi-ideal of S and μ be the pre image of ϑ under f. Let $x,y,z \in R$. Then,

i)
$$\mu(x - y) = \vartheta(f(x-y))$$
$$= \vartheta(f(x) - f(y))$$
$$\leq \max \{\vartheta(f(x)), \vartheta(f(y))\}$$
$$= \max \{ \mu(x), \mu(y) \}$$
ii)
$$\mu(xyz) = \vartheta(f(xzy))$$
$$= \vartheta(f(x), f(y), f(z))$$
$$\leq \max \{\vartheta(f(x)), \vartheta(f(z))\}$$
$$= \max \{ \mu(x), \mu(z) \}$$
Hence μ is an anti fuzzy bi-ideal of R.

Theorem 3.8

Let μ be an anti fuzzy bi-ideal of a Boolean like semi-ring R and μ^+ be a fuzzy set in R given by $\mu^+(x) = \mu(x) + 1 - \mu(1)$ for all x ϵ R. Then μ^+ is an anti fuzzy bi-ideal of R.

Proof

Let μ be an anti fuzzy bi-ideal of a Boolean like semi-ring R for all x,y,z \in R. Then,

$$i)\mu^{+}(x - y) = \mu(x - y) + 1 - \mu(1)$$

$$\leq \max \{\mu(x), \mu(y)\} + 1 - \mu(1)\}$$

$$= \max \{\mu(x) + 1 - \mu(1), \mu(y) + 1 - \mu(1)\}$$

$$= \max \{\mu^{+}(x), \mu^{+}(y)\}$$

$$ii)\mu^{+}(xyz) = \mu(xyz) + 1 - \mu(1)$$

$$\leq \max \{\mu(x), \mu(z)\} + 1 - \mu(1)$$

$$= \max\{\mu(x)+1-\mu(1),\mu(z)+1-\mu(1)\}$$

= max {
$$\mu^+(x)$$
 , $\mu^+(z)$ }

Hence $\mu^{\scriptscriptstyle +}$ is an anti fuzzy bi-ideal of a Boolean like semi-ring R.

Theorem 3.9

Let μ be an anti fuzzy bi-ideal of a Boolean like semi-ring R then $(\mu^+)^+ = \mu^+$

Proof

For any $x \in R$,

we have $(\mu^+)^+(x) = \mu^+(x) + 1 - \mu(1)$

(by Theorem 3.8)

© 2019 JETIR February 2019, Volume 6, Issue 2

 $= \mu(x) + 1 - \mu(1)$ = $\mu^+(x)$

Hence $(\mu^+)^+ = \mu^+$

Theorem 3.10

Let μ be an anti fuzzy bi-ideal of a Boolean like semi-ring R and $\phi:[0,\mu(0)] \rightarrow [0,1]$ be an increasing function. Let μ_{ϕ} be a fuzzy set in R defined by $\mu_{\phi}(x) = \phi(\mu(x))$ for all $x \in R$. Then μ_{ϕ} is an anti fuzzy bi-ideal of R.

Proof

Let $x, y, z \in R$. Then

i) $\mu_{\phi}(x - y) = \phi (\mu(x - y))$ < $\phi (\max \{ \mu(x), \mu(y) \}$

$$= \max \{ \phi(\mu(x)), \phi(\mu(y)) \}$$

$$= \max \{ \prod_{x \in \mathbf{v}} (\mathbf{x}) \mid \prod_{x \in \mathbf{v}} (\mathbf{v}) \}$$

ii) $\mu_{\phi}(xyz) = \phi(\mu(xyz))$

$$\leq \phi (\max \{ \mu(x), \mu(z) \}$$

$$= \max \{ \phi(\mu(x)), \phi(\mu(z)) \}$$

 $= \max \{ \mu_{\phi}(x), \mu_{\phi}(z) \}$

Hence μ_{ϕ} is an anti fuzzy bi-ideal of R.

References :

- M.Aruna, Anti fuzzy ideals in Boolean like semi-ring, International journal of Science, Engineering and Management, Vol 2, Issue 12, Dec 2017, pp 6 – 9.
- R.Biswas, Fuzzy subgroups and anti fuzzy sub groups, Fuzzy subsets and systems 44(1990) 121 – 124.
- 3. Forster A.L: The theorey of Boolean like rings, Trans Amer.ath.Soc.Vol.59, 1946.
- K.H.Kim, Y.B.Jun, Anti fuzzy ideals of near-rings, Iran.J.Fuzzysyst.2(2005) 71 – 80.

- N.V. Subrahmanyam: Boolean semirings, Math.Annale 148,395-401, 1962.
- 6. R.Rajeswari and N.Meenakumari, Fuzzy Bi-ideals in Boolean like semi- rings proceedings, UGC Sponsored National Conference on Advanced in Fuzzy Algebra, Fuzzy Topology & Fuzzy graphs A.P.C. Mahalaxmi college for women, Thoothukudi, 22nd,23rd, Jan 2015,17-29.
- 7. K.Venkateswarlu and B.V.N.Murthy and Amaranth Boolean like semi-rings, Int.J.Contemp.Math. Sciences, Vol.6,2011,no.13,619-6 35.
- L.A.Zadeh, Fuzzy sets, Inform and control 8(1965),338-353.